Menoufia University Faculty of Engineering Shebin El-Kom 2th Semester Academic Year: 2017-2018

Post Graduate: Master Department: Mechanical Power Subject: (MPE620) Time Allowed: 3 hrs Date: 30/5/2018

Note: Assume any data required, state your assumption clearly. Answer all the following Questions

Question (1)

(30 Marks)

A property ϕ is transported by means of convection and diffusion through the one – dimensional domain sketched in the figure. The governing equation is $\frac{d\rho u\phi}{dx} = \frac{d}{dx} \left(\Gamma(\frac{d\phi}{dx}) \right)$ the boundary conditions are $\phi_0 = 1.0$ at x=0 and $\phi_L = 0.0$ at x=L. Using five equally spaced cells and the central differencing scheme, calculate the distribution of ϕ as a function of x. The following data apply u=2.5 m/s, length L=1.0 m, ρ =1.0 kg/m³, Γ = 0.1 kg/m.s.

Question (2)

(30 Marks)

In figure a two- dimensional plate of thickness 1cm is shown. The governing equation is $+\frac{\partial}{\partial y}\left(k(\frac{\partial T}{\partial y})\right)=0.0$. The thermal conductively of a plate material is k=1000

W/m.K. The west boundary receives a steady heat flux of 500 kW/m² and the south and east boundaries are insulated. If the north boundary is maintained at a temperature of 100 °C, use a uniform grid with $\Delta x = \Delta y = 0.1$ m to calculate the steady state temperature distribution at nodes 0.3 m

Question (3)

The heat transfer equation in trapezoidal fine shown in the next figure is given by

$$= \frac{\partial}{\partial x} \left(kA(x) \frac{\partial T}{\partial x} \right) + hP(x)(T - T_{\infty}) = \mathbf{0}$$

Where, k is the thermal conductivity, P(x) and A(x) are the perimeter and cross sectional area of the fin at any x. given that: k = 19 W/m.K, $T_{\infty} = 300$ K, h = 2 W/m^2K , the fin length is 50 cm and fin width (perpendicular to paper) is 15 cm, the find height is H(x) = 5-0.005x cm. Calculate the temperature distribution along the fin using five grid points.

Page 1

Question (4) (20 Marks)

The **x**- component of Navier-Stokes equation in two-dimensional with no body force can be written as: $\frac{\partial \rho u^2}{\partial x} + \frac{\partial \rho u v}{\partial y} = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left(\mu \frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y}\right)$

Drive the finite volume difference equation over a staggered grid and show how the under-relaxation affect the coefficient of the obtained equation. Drive also, an expression for pressure correction equation using SIMPLE algorithm

GOOD LUCK

Dr. Samy M. El-Behery & Dr. Ismail M. Sakr